5.

6.

(b) Charge on the ion (or element or atom)

(c)
$$+4 +5 -3$$

(d) (i)
$$Cu^{-} \rightarrow Cu^{2+} + 2e^{-}$$

(ii) $NO_{3}^{-} + 4H^{+} 3e^{-} \rightarrow NO_{2} H_{2}O$
1

(iii)
$$3Cu + 2NO_3^- + 8H^+ \rightarrow 3Cu^{2+} + 2NO + 4H_2O$$
 1

[8]

[7]

1

1

1 1 1

3

(a) (i) Loss (of electrons) (1) (ii) Oxidation state of nitrogen in NO: (+) 2 (1) Oxidation state of nitrogen in NH⁺: -3 (1) (iii) I₂ (1)

(b) (i)
$$Cl_2 + 2e^- \rightarrow 2Cl^-(1)$$

(ii)
$$SO_2 + 2H_2O \rightarrow SO_4^{2-} + 4H^+ + 2e^-$$
 (1)

(iii)
$$SO_2 + 2H_2O + Cl_2 \rightarrow SO_4^{2-} + 2Cl^- + 4H^+$$
 (1)
or $H_2SO_4 + 2HCl$ etc
Ignore state symbols in equation
Allow multiples of all equations

(ii)
$$SO_2 + 2H_2O \rightarrow SO_4^{2-} + 4H^+ + 2e^-(1) (or H_2SO_4 + 2H^+ + 2e^-)$$
 3
allow e i.e. no charge
penalise E^- once only
allow $-e^-$ on LHS

(c) (i) $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$ (1)

(ii)
$$5(1)(or V or +5)$$

(iv)
$$\text{ClO}_3^- + 6\text{H}^+ + 6\text{Fe}^{2+} \rightarrow \text{Cl}^- + 3\text{H}_2\text{O} + 6\text{Fe}^{3+}$$
 (1)

(iii)
$$\text{ClO}_3^- + 6\text{H}^+ + 6\text{e}^- \rightarrow \text{Cl}^- + 3\text{H}_2\text{O}$$
 (1)

[10]

(a)

(i) $H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$ (1)

(ii)
$$2I^- \rightarrow I_2 + 2e^-(1)$$

(iii) $H_2O_2 + 2H^+ + 2I^- \rightarrow I_2 + 2H_2O$ (1)

3

4

(c) (i)
$$Cl_2 + 2e^- \rightarrow 2Cl^-$$
 (1)

- (iii) $Cl_2 + 2H_2O \rightarrow 2HClO + 2H^+ + 2e^-$ (1)
- (iv) kill bacteria / germs / microorganisms / bugs allow sterilise, disinfect Not allow purify, safe to drink

[12]

8.	(a)	Gain	1				
	(b)	(i)	+4	1			
				1			
		(ii)	$Br_2 + 2e^- \rightarrow 2Br^-$	1			
		(iii)	$SO_2 + 2H_2O \rightarrow 4H^+ + SO_4^{2-} + 2e^-$	1			
		(iv)	$Br_2 + SO_2 + 2H_2O \rightarrow 2Br^- + 4H^+ + SO_4^{2-}$	1			
	(c)	(c) $Cl_2 + H_2O \rightarrow H^+ + Cl^- + HOCl$					
		Chlo	ride: -1	1			
		Chlo	rate(I): +1	1			
	(d)	Chlo	ride ions cannot reduce sulphuric acid (Or chloride ions are weak reducing agents	1			
			Or sulphuric acid is not a strong enough oxidising agent				
			Or sulphuric acid is a weaker oxidising agent than chlorine)				
	(e)	KCl	$+ H_2SO_4 \rightarrow HCl + KHSO_4$	1			
			$(Allow \ 2KCl + H_2SO_4 \rightarrow 2HCl + K_2SO_4)$				
	(f)	(i)	Bromine	1			
		(ii)	Sulphur dioxide	1			
		()			[13]		
9.	(a)	Incre	ase dar Waal's forces between melecules	1			
		Incre	as with size (or M_r or surface area etc)	1			
		More	e energy needed to break (overcome) these forces	1			
			(Note max 2 from last three marks if no mention of molecules or 'molecular')				
	(b)	(i)	Brown solution (or yellow or orange)	1			
			$Cl_2 + 2Br \rightarrow 2C1^- + Br_2$	1			
		(ii)	cream precipitate	1			
			$Br^- + Ag^+ \rightarrow AgBr$	1			
			Precipitate dissolves	1			

 $2H^+ + H_2SO_4 + 2Br^- \rightarrow SO_2 + Br_2 + 2H_2O (SO_2 \text{ and } Br_2 (1), \text{ equation } (1))$ (c) 2 [13] increases from fluorine to iodine (1) (a) sizes of molecules increase (1) (or molecules have more electrons or mass of molecules increases) OoL mark Magnitude of intermolecular forces or vdW forces increase (1) (or more vdW forces) More energy required to separate molecules (or particles) (1) 4 (or more energy to break intermolecular forces) or intermolecular forces difficult to break (b) with NaCl white ppt (1) soluble in ammonia (1) note, if ppt clearly refers to wrong substance e.g. NaCl then C.E = 0with NaBr cream (or off white or biege) ppt (1) partially soluble (or insoluble) in ammonia (1) 4 ignore references to conc ammonia if obviously added silver nitrate mixed with ammonia allow: *NaCl: no change* (2) NaBr: cream ppt (2) oxidising ability decreases from chlorine to iodine (or down the Group) (1) (c) $Cl_2 + 2Br^- \rightarrow 2Cl^- + Br_2$ (1) allow use of NaBr, HBr etc Br₂ red brown (or yellow or orange) liquid (or solution but not solid) (1) $Cl_2 + 2I^- \rightarrow 2Cl^- + I_2$ (1) allow use of NaBr etc, penalise HI once only

orange (brown) fumes (gas), White fumes (or misty fumes),

(iii)

10.

choking gas (any 2)

I₂ brown solution / black solid (1) do not allow any reference to purple

 $Br_2 + 2I^- \rightarrow 2Br - + I_2$ (1)

Yellow/orange/red-brown/brown solution goes brown/darker brown solution/ black solid (1)

7

1

		A reducing agent loses (donates) electrons 1						
	(b)	 Sulphur dioxide oxidation state +4 Sulphur oxidation state 0 Hydrogen sulphide oxidation state - 2 	1 1 1 1 1					
		 Sulphur dioxide is a choking gas or has a pungent odour Sulphur is a yellow solid Hydrogen sulphide has a smell of bad eggs Any 2 marks 	1 1					
		(iii) $SO_4^{2-} + 4H^+ + 2e^- \Rightarrow SO_2 + 2H_2O$ $SO_4^{2-} + 8H^+ + 6e^- \Rightarrow S + 4H_2O$ $SO_4^{2-} + 10H^+ + 8e^- \Rightarrow H_2S + 4H_2O$ <i>Any 2 marks</i> <i>(Allow equations with H_2SO_4)</i>	1 1					
	(c)	Cl ₂ + H ₂ O → H ⁺ + Cl ⁻ + HOCl or Cl ₂ + H ₂ O → 2H ⁺ + Cl ⁻ + OCl ⁻ or Cl ₂ + H ₂ O → HCl + HOCl Water is not oxidised The oxidation states of O (-2) and H(+1) remain unchanged	3	[15]				
12.	(a)) decreases number of shells increases/ shielding increases /atomic size increases weaker attraction (by nucleus) on bonding electrons / weaker attraction (by nucleus) on electron pair in a covalent bond						
	(b)	(i) increases(ii) concentrated sulphuric acid	1 1					
	(c)	white ppt soluble in ammonia cream ppt partially soluble /insoluble in ammonia	1 1 1					

	(d)	Cl ₂ + 2NaOH → NaCl + NaOCl +H ₂ O bleach disinfectant /steriliser/kills bacteria	1 1 1	[12]
13.	(a)	Fluorine or F ₂ or F (1) NOT Fl	1	
	(b)	Γ (or At ⁻) (1) allow +e ⁻ but not equation	1	
	(c)	Observation with NaF(aq): no change OR colourless solution OR remains colourless (1)		
		Observation with NaI (aq): yellow solid / percipitate (1)		
		Equation: $\Gamma(aq) + Ag^{+}(aq) \rightarrow AgI(s)$ (1) or NaI (aq) + AgNO ₃ (aq) \rightarrow NaNO ₃ (aq) + AgI(s) no ss no marks	3	
	(d)	Observation: steamy / white / misty fumes (1) NOT smoke / gas		
		Equation: NaCl + $H_2SO_4 \rightarrow NaHSO_4 + HCl$ Ignore ss	2	
	(e)	Observation 1: black / grey solid lilac / purple gas pungent / steamy / choking fumes / steam		
		Observation 2: yellow solid / smell <u>bad</u> eggs / stink bombs (2) any two mark first one on each line		
		$\begin{aligned} &\textit{Equation: } 2\text{NaI} + 2\text{H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + 2\text{H}_2\text{O} + \text{I}_2 + \text{SO}_2 \\ & \text{two reduction products from } \text{Na}_2\text{SO}_4 \text{ e.g. } \text{H}_2\text{S or S or } \text{SO}_2 + \text{I}_2(\text{s}) \text{ (1)} \\ & \textit{balanced equation (1)} \end{aligned}$	4	
	(f)	<i>Observation</i> : (Starts) blue or black (1) \rightarrow colourless (1)		
		Equation: $I_2 + 2Na_2S_2O_3 \rightarrow 2NaI + Na_2S_4O_6$ (1) (or $I_2 + 2S_2O_3^{2-} \rightarrow 2I^- + S_4O_6^{2-}$)	3	[14]

14.	(a)	decreases; increase in shielding ; (<i>or atomic radius</i>) less attraction for bonding (<i>or shared</i>) electrons;	1 1 1
	(b)	brown solution; (or black solid)	1
		$Cl_2 + 2KI \rightarrow 2KCl + I_2;$ (or ionic equation)	1
	(c)	SO ₂ ;	1
		$SO_4^2 + 4H^+ 2e^- \rightarrow SO_2 + 2H_2O;$	1
		S (also H_2S);	1
		$SO_4^{-2} + 8H^+ 6e^- \rightarrow S + 4H_2O \text{ (or } SO_4^{2-} + 10H^+ + 6e^- \rightarrow H_2S + 4H_2O;$	1
	(d)	$Cl_2 + 2NaOH \rightarrow NaCl + NaOCl + H_2O;$	1
		sodium chloride;	1
		-1; sodium chlorate(I) (or bleach etc);	1 1
		+1;	1

 16. (a) Trend: decrease (1) C.E if wrong Explanation: number of shells increases (or atomic radius increases) (1) increased nuclear shielding (1) or less attraction for bond (pair electrons)

3

[14]

17. (a) (i) -2 OR 2-

- (ii) NaI or NaAt or I⁻ or iodide or At⁻or Astatide (1) <u>Not</u> atoms or molecules
- (iii) Smell of bad eggs (1) Allow PbAc₂ goes black and $K_2Cr_2O_7/H^+$ goes cloudy green
- (iv) $8 e^- + 8 H^+ + H_2SO_4 \rightarrow H_2S + 4H_2O$ (1) OR 10 H⁺ +SO₄²⁻

(b) (i) HF or HCl (**1**)

CE = 0 if redox answer given If wrong halide given allow max one in b(iii) If NaF or NaCl, or F^- or Cl^- given lose mark in (i) Mark on if X is e.g. HF₂ or H₂F

- (ii) NaF or NaCl or F^- or $Cl^-(1)$
- (iii) A proton donor or an acid (1)
- (iv) $H^+ +F^- \rightarrow HF$ OR H₂SO₄ + NaF \rightarrow NaHSO₄ + HF OR H₂SO₄ + 2 NaF \rightarrow Na₂SO₄ + 2 HF OR for chloride

[8]

 (a) decreases (1) attraction for bonding pair goes down (1) <u>or electron density in bond, or covalent (or bonding) electrons</u> as size of atoms <u>or shielding goes up</u> (1)

3

(b) (i) Br₂ (1)

formulae <u>not</u> names, gases <u>or</u> fumes, <u>not</u> solutions brown fumes (1) <u>or</u> yellow-brown <u>or</u> orange, <u>not</u> yellow I₂ (1) violet fumes or black solid (1) <u>or</u> purple fumes

(ii) SO_2 (1) S (1) H_2S (1) $S and H_2S$ (1)

Penalise missing S once only

(iii) HBr (1) HI (1) (<u>not</u> steam)

name <u>or</u> formula penalise wrong state symbols <u>once</u> only acid–base <u>or</u> displacement (1)

[14]

11

- (i) ionisation energy decreases down group (1) radius or shielding increases (1)
 electronegativity decreases down group (1) radius or shielding increases (1) attraction for electron pair in covalent bond decreases (1)
 - (ii) BeCl₂ is covalent (1) Be(OH)2 is amphoteric (1) dissolves in excess NaOH (1) forming [Be(OH)4]²⁻ ions (1) Be²+ ion has high charge to size ratio (1) polarises anions (1)

max 10

[10]

20. (a) (i) HNO₃ or CH₃COOH (1) CE in (a) if incorrect acid given

(ii) $2HNO_3 + Na_2CO_3 \rightarrow 2NaNO_3 + CO_2 + H_2O$ (1) 2

19.

(b)	(i)	I^- or At^- not elements, atoms or molecules (1)	
	(ii)	F^- not elements, atoms or molecules (1)	2
(c)	(i)	${ m Cl}^-(1)$ Allow AgCl Not element, atoms or molecules	
	(ii)	$Br^{-}(1)$	
	(11)	Allow AgBr Not element, atoms or molecules	

[6]

2

21. (a) Chlorine added to bromide

Yellow/orange solution (or colour) but not precipitate or gas formed (1)

Allow:- orange or yellow-brown ; yellow-red; orange-brown; orange-red but NOT red or brown

 $2Br^{-} + Cl_2 \rightarrow 2Cl^{-} + Br_2 (1)$

Allow molecular equations; allow equations with KBr; ignore state symbols

Chlorine added to iodide

Brown solution (or colour) or black or grey or purple/black precipitate (1)

Do not allow purple solution or purple fumes or brown precipitate

 $2\Gamma + \mathrm{Cl}_2 \rightarrow 2\mathrm{Cl}^- + \mathrm{I}_2 (\mathbf{1})$

4

Allow molecular equations; allow equations with KI; ignore state symbols

(b) Concentrated sulphuric acid added to a bromide

If aqueous sulphuric acid used, or Conc H_2SO_4 (aq), in any section, do not allow marks for observations in that section.

Orange or brown or yellow or yellow-red (or these colours-combined) <u>fumes/gas(1)</u>

Do not allow red on its own

Steamy or white fumes or misty (1)

<u>Stated reduction product</u>;- SO₂ (wrong if extra product(s) given)

Concentrated sulphuric acid added to an iodide

Purple fume or black solid (1)

Steamy or white fumes or misty (1)

Yellow (solid) (1)

Smell of bad eggs (1)

Stated reduction products;- SO₂, S, H₂S (all three must be given) (1) Do not extract these products from equations; wrong if extra product(s) given

Half-equations

Ignore state symbols in equations

$$2Br^{-} \rightarrow Br_2 + 2e^{-}$$
 (1)
 $4H^{+} + SO_4^{2-} + 2e^{-} \rightarrow SO_2 + 2H_2O$ (1)

or $2H^+ + H_2SO_4 + 2e^- \rightarrow SO_2 + 2H_2O$

Overall equation

$$4H^{+} + SO_{4}^{2-} + 2Br^{-} \rightarrow SO_{2} + 2H_{2}O + Br_{2} (1)$$

or $2H^+ + H_2SO_{4+}2Br^- \rightarrow SO_2 + 2H_2O + Br_2$

[13]

9

24.	Addition of silver nitrate	No precipitate with fluoride ions (1) White precipitate with chloride ions (1) Cream precipitate with bromides ions (1) Yellow precipitate with iodide ions (1)	
	Addition of ammonia solution	AgCl precipitate dissolves in dilute NH3 (aq) (1) AgBr precipitate sparingly soluble in dilute NH3 (aq) OR soluble in concentrated NH3 (aq) (1)	
		AgL precipitate insoluble in concentrated NH3 (aq) (1)	7
	Silver astatide	AgAt precipitate insoluble in concentrated NH3 (aq) (1) Solubility of AgX decreases down Group VII OR as AGI insoluble predict AgAt insoluble (1)	
			2

[9]

25. (a) Oxidising power decreases, $Cl_2 > Br_2 > J_2$ (1)

- (b) Observation with aqueous KC1 Yellow solution or no reaction (1)
 Observation with aqueous KI Brown solution or black precipitate (1)
 Ionic equation 2I⁻ + Br₂ → 2Br⁻ + I₂ (1)
- (c) (i) $Cl_2(1)$
 - (ii) $H_2O + Cl_2 \rightleftharpoons HCl + HClO (1)$ (iii)Red colour due to presence of acid or H^+ ions (1)White due to bleading by HClO (1)4

(d) $2NaOH + Cl_2 \longrightarrow NaCl + NaClO + H_2O(1)$

[9]

3

26.	(a)	(i)	$\mathbf{A} = $ calcium iodide / CaI ₂ / any calcium (1)		
			$\mathbf{B} = \text{silver iodide / AgI only}$ (1)		
			$\mathbf{C} = \text{iodine} / \mathbf{I}_2 \text{ only (1)}$		
			$\mathbf{D} = $ sodium thiosulphate / Na ₂ S ₂ O ₃ only (1)	4	
		(ii)	$2AgNO_3 + CaI_2 \longrightarrow 2AgI + Ca(NO_3)_2$		
			or $Ag^+ + I^- \longrightarrow AgI(1)$	1	
			allow equation consequential on identity of A in (i) allow any Ca/Sr/Li halide		
	(b)	(i)	two factors hydration energy / explanations in terms of hydration (lattice energy / explanations in terms of breaking down lattice (1)	1)	
			explanation hydration energy of Ba^{2+} is smaller than Mg^{2+} / insufficient hydration energy to overcome lattice energy for $BaSO_4$ (1)	3	
		(ii)	$Ba^{2+}(aq) + SO_4^{2-}(aq) \otimes BaSO_4(s)$		
			for ionic equation (1)		
			for state symbols (may be awarded from a molecular equation) (1)	2	
	(c)	(i)	NaCl + $H_2SO_4 \rightarrow HCl + NaHSO_4$ (1)	1	
			allow Na ₂ SO ₄ with correct balancing		
		(ii)	compound SO_2 only (1)		
			oxidation state +4 (1)	2	
			must have + sign before or Roman numeral allow this mark mark consequentially on H_2S , H_2SO_3 , but not S, SO_3		
		(iii)	$2HBr + H_2SO_4 \rightarrow Br_2 + SO_2 + 2H_2O$		
			all formulae correct (1)		
			correctly balanced (1)	2	
			allow H ₂ SO ₃		
		(iv)	any brown / orange / red / steamy fumes / white fumes / choking smell /froth (1)	1	[16]

27. (a) a substance which accepts electrons / removes electrons (from another substance) (1)

(b)	decreasing trend in oxidising power (1)							
	lass	harogen atoms become larger / have more shens / more sherding (1)						
	less a	ittract	tion for electrons not lower electronegativity (1)					
	allow	v reve	rse argument for $I \rightarrow F$	3				
(c)	(i)	aq) colourless and Cl ₂ (aq) colourless/green / yellow en / yellow (1)						
		yello not	ow / orange / brown (solution) / black (precipitate) (1) clear, not purple					
		if ye	ellow given for Cl_2 (aq), must be darker colour for mixture	2				
	(ii)		$2KI + Cl_2 \rightarrow 2KCl + I_2$					
		or	$\mathrm{KI} + \frac{1}{2} \operatorname{Cl}_2 \rightarrow \mathrm{KCl} + \frac{1}{2} \mathrm{I}_2$					
		or	$I^- + \frac{1}{2} \operatorname{Cl}_2 \longrightarrow \operatorname{Cl}^- + \frac{1}{2} \operatorname{I}_2$					
		or	$2\Gamma + \mathrm{Cl}_2 \rightarrow 2\mathrm{Cl}^- + \mathrm{I}_2 \ (1)$					
		not	an equation with ClO ⁻	1				
	(iii)	iodi	de / Γ / KI / potassium iodide (1)	1				
	(iv)		$^{1/2}Cl_{2} + e^{-} \rightarrow Cl^{-}$					
		or	$\operatorname{Cl}_2 + 2e^- \to 2\operatorname{Cl}^-$ (1)					
			$I^- \rightarrow \frac{1}{2} I_2 + e^-$					
		or	$2\Gamma \rightarrow I_2 + 2e^-$ (1)					
		allo	w 1 mark for oxidising and reducing in wrong spaces	2				
(d)	(i)	oxid	lation number of iodine in $IO_3^- = V / +5$ (1)					
		oxid	lation number of iodine in $\Gamma = -1$ (1)					
		ovid	lation number of iodine in $I_2 = 0$ (1)					
		UNIU	$\frac{1}{1} = \frac{1}{1} = \frac{1}$	2				
		pena	anse 5+ and 1– once; penalise twice if 5 and 1 given	3				

 $IO_3^- + 5I^- + 6H^+ \rightarrow 3I_2 + 3H_2O$ (ii)

> all species present (ignore electrons) (1) balanced (1)

> > 2

4

allow $KIO_3 \equiv IO_3^-$ and $KI \equiv I_2$ for species mark		
if K included, K ⁺ must appear on r.h.s. for balanced mark		
similarly for H ₂ SO ₄ / HCl instead of H ⁺	2	
		[15]

(a) Increase in boiling temperature:-Molecular size increases from F_2 to I_2 (1) van der Waals attractive forces increase (1) Reducing power increases from F^- to At^- (1) (b) Ionic size increase (1) Outer electrons further from the nucleus/more shielded (1) Less strongly attracted/ more easily lost. (1)

(c) HAt (g) (1) Astatide a base/proton acceptor (1) $NaAt + H_2SO_4 \rightarrow NaHSO_4 + HAt$ (1) $SO_2(g)$ (1) Astatide a reducing agent (1) $2At^- \rightarrow At_2 + 2e^-$ (1)

 $H_2SO_4 + 2H^+ + 2e^- \rightarrow SO_2 + 2H_2O (1)$

 $2NaAt + 2H_2SO_4 \rightarrow SO_2 + At_2 + 2H_2O + Na_2SO_4$ (2) or $H_2S(g)$ (1) Astatide a reducing agent (1) $8At^- \rightarrow 4At_2 + 8e^-$ (1)

or
$$H_2SO_4$$

28.

$$H_{2}SO_{4} + 8H^{+} + 8e^{-} \rightarrow H_{2}S + 4H_{2}O (1)$$

8NaAt + 5H_{2}SO_{4} \rightarrow H_{2}S + 4At₂ + 4H₂O + 4Na₂SO₄ [2] Max 9
[15]

29.	(a)	Deci	reases (1)				
		Ator or m	nic radius / size increatore shells (if not give	ase or atom has more shells more shielding n above) (1)			
		<pre>less attraction for shared electron pair or electrons / electron density / electron pair in a covalent bond (1)</pre>					
	(b)	Incre					
		Mole have					
		Increase in intermolecular forces / van der Waal forces / v.d.w. explained (1)					
			Mark CE if trend in Note: In part (a) m AFTER a correct t	acorrect. Mark explanation points separately ark CE if ions or molecules discussed rend mark awarded.			
					3	[7]	
30	(2)	(i)	ability of an atom t	a withdraw electrons (1)			
30.	(<i>a</i>)	(1)	from a <u>covalent bor</u>	nd (1)			
		(ii)	attraction for electronal as size of atoms or a	on pair goes down shielding goes up (1)	3		
	(b)	Effe	ct on bond polarity	None (1)			
		Expl	anation	equal and opposite effect from each atom cancels out (1)	2		
	(c)	(i)	SO ₂ (1)				
			SO ₂ (1) H ₂ S (1)				
		(ii)	Br ₂ (1)	brown fumes (1)			
			I ₂	violet/purple fumes (1)			
			HBr and HI (1)	steamy fumes (1)	9	[14]	

31.	(a)	(i)	SO ₂ (1)		
		(ii)	H ₂ S (1)		2

(b) (i)
$$Hl \rightarrow \frac{1}{2} l_2 + H^+ + e^-(1)$$

- (ii) $8H^+ + H_2SO_4 + 8e^- \rightarrow H_2S + 4H_2O$ (1)
- (iii) $2H^+ + H_2SO_4 + 2e^- \rightarrow SO_2 + 2H_2O$ (1)
- (iv) $1OHI + 2H_2SO_4 \rightarrow H_2S + SO_2 + 5I_2 + 6H_2O$ components (1) balance (1) 5

(c) Equation
$$2OH^- + Cl_2 \rightarrow OCl^- + Cl^- + H_2O(1)$$

Commercial use OCl^- is a bleach/disinfectant (1) 2

[9]

32.	(a)	(i)	oxidation power increases (1) more shells added (1) atomic radius increase (1) attraction for outer electrons decrease (1)	
		(ii)	$ \begin{array}{ll} NaCl+Cl_2 & \text{no observable change (1)} \\ NaBr+Cl_2 & \text{orange/yellow solution formed (1) of bromine (1)} \\ NaI+Cl_2 & \text{red/brown solution formed or black precipitate (1)} \\ & \text{of iodine (1)} \end{array} $	
			Equations $2NaBr + Cl_2 \rightarrow 2NaCl + Br_2$ Reagents (1); balance (1) $2NaI + Cl_2 \rightarrow 2NaCl + I_2$ Reagents (1); balance (1)	13

(b) (i)
$$CIO^{-} + 2\Gamma + 2H^{+} \rightarrow I_{2} + CI^{-} + H_{2}O$$
 Reagents (1); balance (1)
 $I2 + 2S_{2}O_{3}^{2-} \rightarrow 2I^{-} + S_{4}O_{6}^{2-}$ Reagents (1); balance (1)
Starch indicator (1) End-point:- Blue (1) to colourless (1)

(ii) mol thio =
$$23.0 \times 10^{-3} \times 0.100$$
 (1) = 2.3×10^{-3}
mol I₂ = mol thio/2 (1)
= 1.15×10^{-3} (1)
mol ClO⁻ in 25 cm³ diluted solution = mol I₂ (1)
= 1.15×10^{-3} (1)
mol ClO⁻ in 250cm³ diluted solution = $10 \times 1.15 \times 10^{-3}$ (1)
= 1.15×10^{-2} (1)
mol ClO⁻ in original 10 cm³ solution = 1.15×10^{-2} (1)
Multiply by 100 to convert 10 cm³ to 1.0 dm³ (1)
Hence mol dm⁻³ = $100 \times 1.15 \times 10^{-2}$
= 1.15 (1)
[30]

33.	(a)	$Cl_2(aq)$ to $Br^-(aq)$;	yellow-orange or yellow-red or yellow-brown solution (1)	
			$2\mathrm{Br}^{-} + \mathrm{Cl}_{2} \rightarrow 2\mathrm{Cl}^{-} + \mathrm{Br}_{2} (1)$	
			or molecular equation	
		C1 ₂ (aq) to Γ (aq);	brown/black solution formed or black/brown/grey ppt/solid (1)	
			$2\mathbf{I}^{-} + \mathbf{Cl}_{2} \rightarrow 2\mathbf{Cl}^{-} + 1_{2} (1)$	
			or molecular equation4	
				4
	(b)	Bromide:-	Brown/orange fumes (1)	
			Bromine produced (1)	
			Sulphur dioxide produced (1)	
				3
		Iodide:-	Purple fumes or black/brown/grey solid or smell of bad eggs (1)	
			Iodine produced (1)	
			SO ₂ , S, H ₂ S produced (one mark each) (3)	
				5

$2Br \rightarrow Br_2 + 2e^- \mathbf{OR}$		
$21 - \rightarrow I_2 + 2e^-(1)$		
$H_2SO_4 + 2e^- + 2H^+ \rightarrow SO_2$	+2H ₂ O OR	
$H_2SO_4 + 6e^- + 6H^+ \rightarrow S$	+4H ₂ O OR	
$H_2SO_4 + 8e^- + 8H^+ \rightarrow H_2S$	+4H ₂ O (1)	
Any correct equation based on half equations (1)		
nan-equations (1)		3
	$2Br- \rightarrow Br_{2} + 2e^{-} \mathbf{OR}$ $21- \rightarrow I_{2} + 2e^{-} (1)$ $H_{2}SO_{4} + 2e^{-} + 2H^{+} \rightarrow SO_{2}$ $H_{2}SO_{4} + 6e^{-} + 6H^{+} \rightarrow S$ $H_{2}SO_{4} + 8e^{-} + 8H^{+} \rightarrow H_{2}S$ Any correct equation based on half-equations (1)	$2Br- \rightarrow Br_{2} + 2e^{-} OR$ $21- \rightarrow I_{2} + 2e^{-} (1)$ $H_{2}SO_{4} + 2e^{-} + 2H^{+} \rightarrow SO_{2} + 2H_{2}O OR$ $H_{2}SO_{4} + 6e^{-} + 6H^{+} \rightarrow S + 4H_{2}O OR$ $H_{2}SO_{4} + 8e^{-} + 8H^{+} \rightarrow H_{2}S + 4H_{2}O (1)$ Any correct equation based on half-equations (1)

34.	(a)	(i)	Increase from F_2 to I_2 (1)		
		(ii)	Intermolecular (van der Waals) forces increase (1) as Mr/molec radius/No of electron shells increases (1)		
		(iii)	$Cl_2 = gas, Br_2 = liquid, I_2 = solid (1)$		
			$\therefore \text{Astatine} = \text{solid} (1)$	5	
	(b)	(i)	electron donor (1)		
		(ii)	increases down group (1) increased shielding/increased ionic radius more shells makes e ⁻ easier to lose (1)		
		(iii)	Br ⁻ reduces S from oxidation state +6 (1) to oxidation state +4 (SO ₂) (1)		
			Γ , in addition, gives oxidation state +O (S) (1) and oxidation state -2 (H ₂ S) (1)	7	
	(c)	(i)	$Cl_2 + 2OH^- \rightleftharpoons Cl^- + OCl^- + H_2O(1)$		
		(ii)	Cl ₂ has oxidation state 0 (1) Cl ⁻ has oxidation state -1 (1) OCl ⁻ has oxidation state +1 (1)		
		(iii)	Oxidising agent in forward direction Cl_2 (1)Reducing agent in backward direction Cl^- (1)	6	[40]
					[18]

[15]

35.	(a)	Decreases (1)		
		Atomic radius increases (1)		
		due to more shells or due to more shielding (1)	3	
	(b)	Increases (1)		
		Molecular size or surface area increases (1)		
		Intermolecular van der Waals' forces increase (1)	3	
	(c)	Br_2 in non-polar or atoms have same electronegativity (1)		
		weak van der Waals' forces between Br_2 molecules (1)		
		I-C1 is polar or atoms have different electronegativies (1)		
		Dipole-dipole attractive forces between ICl molecules (1)	4	
				[10]

36. Br⁻ present because orange – brown fumes of bromine liberated (1) $Cl_2 + 2Br^- \rightarrow 2Cl^- + Br_2$ (1) I⁻ present because black precipitate of iodine formed (1) $Cl_2 + 2\Gamma \rightarrow 2C\Gamma^- + I_2$ (1) AgI precipitate insoluble in concentrated ammonia (1) AgBr precipitate soluble in concentrated ammonia (1) Moles AgI = mass/ M_r = 0.564/235 (1); = 2.4 × 10⁻³ Mass Γ = mole AgI × A_r = 2.4 × 10⁻³ × 127 (1) = 0.305g

Hence mass AgBr = 0.902 - 0.564 = 0.338g (1) Moles AgBr = mass/ $M_r = 0.338/188$ (1) = 1.8×10^{-3} Mass Br⁻ = Mole x $A_r = 1.8 \times 10^{-3} \times 80$ (1) = 0.144gPercentage Br⁻ in sample = $0.144 \times 100/0.545 = 26.4\%$ (26 – 27) (1) Percentage Γ in sample = $0.305 \times 100/0.545 = 55.96\%$ (56 ± 0.5) (1) Equation marks Ag⁺ + $\Gamma \rightarrow AgI$ (1) Ag⁺ + Br⁻ $\rightarrow AgBr$ (1) AgBr + 2NH₃ $\rightarrow [Ag(NH_3)_2]^+ + Br^-$ (1)

[Max 15]

37. (a) A reagent which takes or accepts electrons (1)

- (b) Mn has been reduced from VII to IV (1) Mn has been reduced from VII to VI (1) Oxygen has been oxidised from -2 to zero (1)
 3
 - (i) $Cl_2 + H_2O \rightleftharpoons 2H^+ + ClO^- + Cl^-$ (1) (ii) OH^- removes H^+ (1) displacing equilibrium to the right (1) $H^+ + OH^- \rightarrow H_2O$ (1) or $Cl_2 + 2NaOH \rightarrow NaClO + NaCl + H_2O$

[8]

1

4

6

38.

(c)

(b)	Addition of silver nitrate	
		Chloride gives white precipitate / solid (1)
		Bromide gives cream precipitate / solid (1)
		Iodide gives yellow precipitate / solid (1)
	Addition of ammonia	
		Chloride precipitate soluble in dilute (1)
		Bromide precipitate soluble in concentrated (1)
		Iodide precipitate insoluble (1)
	Do not allow halo	gen or sodium halide

40.	(i)	Hydroxide Sulphate	solubility increases solubility decreases	(need <u>trend)</u> (need trend)	1 1
		I	(If <u>both</u> Mg/Ba salts corr max)	correctly compared - but no trend- allow 1	
		Add a	cid name/correct	formula HC1	1

(ii)	(accept HN	O_3/CH_3COOH [NOT [If acid added is $H_2SO_4 = CE -$	hydrogen chloride] allow only M2]		
	Add Ba^{2+} salt name/correct formula $BaCl_2$ (accept $Ba(NO_3)_2 / Ba(CH_3COO)_2$)				
		[If reagent added is BaSO4/Ba/	$(Ba(OH)_2 = CE - allow only M1]$		
	MgCl ₂	No change / no ppt / no reaction	1	1	
	MgSO ₄	White ppt / solid / suspension [Both observations tied to Ba^{2+} is	NOT chalky, milky] ions being added	1	
	MgSO ₄ + E	1			
	(Reagent m	ark (M2) can be awarded from fu	Ill equation)	1	
	[Treat incorrect equation for MgCl ₂ as contradiction of correct equation] (Ignore carbonate equations) (Ignore state symbols)			1	
(iii)	Reactivity	increases (down group)	[NOT solubility increases]	1	
		$Ba + 2H_2O \rightarrow Ba(OH)_2 + H_2$		1	[11]
Tend	lency or stren	ight or ability or power of an <u>ato</u>	<u>m/element/nucleus</u> to	1	

attract/withdraw electrons / e density / bonding pair / shared pair	
In a <u>covalent</u> bond	1
(tied to $M1$ – unless silly slip in $M1$)	
(If molecule/ion then $= CE = 0$) (NOT electron (singular) for M1) Mark as $2 + 2$	
Increase in size or number of shells or increased shielding or bonding electrons further from nucleus [NOT 'increase in number of electrons']	1
Decreased attraction for (bonding) electrons	1

(*tied to M3*) (*If 'ion' here, lose M3 and M4*) (*NOT 'attraction of covalent bond'*) (*Ignore reference to proton number or effective nuclear charge*)

[4]

41.

42.	(a)	Increases	1
		Heat or steam or gas phase or H temp (>100°) (NOT 'hot')	1
		$Mg + H_2O \rightarrow MgO + H_2$	1
		(Ignore state symbols – even if they are wrong)	
	(b)	White precipitate/solid/suspension(Not 'cloudy / milky') $BeCl_2 + 2NaOH \rightarrow Be(OH)_2 + 2NaCl$	1
		Or $\text{Be}^{2+} + 2\text{OH}^- \rightarrow \text{Be}(\text{OH})_2$	1
	$(Accept \ BeCl_2 + 2OH^- \rightarrow Be(OH)_2 + 2Cl^-)$		
		Ppt (re)dissolves or solution goes clear (Allow 'ppt disappears') (NOT 'solution forms')	1
		$Be(OH)_2 + 2OH^- \rightarrow Be(OH)_4^{2-}$	
		$[NOT \text{ Be}(OH)_6^{+-}]$	
		Or $Be(OH)_2 + 2NaOH \rightarrow Na_2Be(OH)_4$	1

[7]

44. Barium dissolves (1) (or forms solution (a) Gas evolved (1) (or hydrogen evolved) or bubbles gets hot (1) do not allow evolution of wrong gas $Ba(s) + 2H_2O(1) \rightarrow Ba^{2+}(aq) + 2OH^{-}(aq)$ (or $Ba(OH)_2(aq) + H_2(g)$ Species all correct (1) State symbols correct (1) (provided species are correct) Balanced equation (1) White precipitate with sodium sulphate (1) (or white solid or suspension or white cloudy or milky) $Ba^{2+}(aq) + SO_4^{2-}(aq) \rightarrow BaSO_4(s)$ $(or Ba(OH)_2(aq) + Na_2SO_4(aq) \rightarrow BaSO_4(s) + 2NaOH(aq))$ State symbols (1) Balanced equation (1) (mark obs. of ppts independently (and in (b))

(b) with BeCl₂ and NaOH get a <u>white precipitate</u> (1) (or solid etc) because Be(OH)₂ is insoluble (1) (or white ppt is Be(OH)₂) ppt is soluble in excess reagent (1) Because Be(OH)₂ is amphoteric (or beryllium forms complex ion (Be(OH)₄)²⁻) (1) (*This is the quality of language mark so the terms must be used in a sentence*)

With MgCl₂ get white ppt (**1**) Because Mg(OH)₂ is sparingly soluble (or insoluble) (**1**) (or white ppt is Mg(OH)₂)

With BaCl₂ no ppt formed (1) (or no reaction) (or remains in solution) Because Ba(OH)₂ is soluble (1) (or all species are soluble) Solubility of hydroxides increases down Group (1)

Note can take marks for $Be(OH)_2(s)$, $Mg(OH)_2(s)$, $Ba(OH)_2(aq)$ from equations Wrong formula for $M(OH)_2$ loses mark

max 8

8

(c) (i) %O = 55.75% (1)

Ca : S : O : H = $\frac{23.29}{40.1}$: $\frac{18.64}{32.1}$: $\frac{55.75}{16}$: $\frac{2.32}{1}$ (1) Allow 40, 32

 $= 1: \quad 1: \qquad 6:$ therefore formula: $CaSO_6H_4$ (1) if Oxygen omitted can score 2nd mark only

molecular formula

(ii)

 $\overline{\text{empirical formula}} = \text{an integer (1) (or a number)}$ Allow correct definitions as an alternative for the mark emp. form. The simplest ratio of atoms of each element in a compound molec. form. The actual number of atoms of each element in a molecule

Mr (1) (or molar mass or RFM NOT molecular mass) 5

[21]

45.

(a)	(i)	any tv	wo of:: effervescence / fizzing / bubbling / white precipitate or sediment / solution gets warm / metal dissolves or disappears (2)	2
		(ii)	comparisons needed for the two observations given in (a) (i) more (rapid) effervescence / more vigorous reaction / less or no (white) precipitate / solution gets hot i.e. hotter than in (i) / metal dissolves more quickly (2)	2
		(iii)	$Ca + 2H_2O \longrightarrow Ca(OH)_2 + H_2$ (1)	1
	(b)	(i)	starch (1)	1
		(ii)	when the solution is coloured (pale) yellow / straw / close to the end point independent of (c)(i) $% \left(c_{i}^{2}\right) =0$	1
		(iii)	blue / black, allow purple, ignore brown (1) to colourless not clear (1) allow 1 mark if reversed	2
		(iv)	ClO-: $(+)1$ Cl-: -1 [condone ClO-: $1+$ and Cl-: $1-$] (1)	1
		(v)	$Γ: -1$ $I_2: 0$ [condone 1- for Γ] (1)	1
		(vi)	$ClO^{-} + 2H^{+} + 2I^{-} \longrightarrow Cl^{-} + I_{2} + H_{2}O$ (1)	1
			not KI	

allow spectator K₊ ions if on both sides

[12]

46. *Q.L.* = quality of language marks

(a) Aluminium:

(high) melting point immediate between Si & P (1)

metallic bonding (1)

Q.L.

delocalised electrons mentioned in a sentence explaining metallic bonding (1)

energy required to break bonds (1) Note: last mark note scored if there is a contradiction e.g ionic bonding or molecules or v.d.w. forces

Silicon

highest melting point (1) covalent (1) macromolecular (1) (or giant structure) much energy needed to break bonds (1) (or difficult to break bonds)

Phosphorus

lowest melting point (1) molecular (1) (or P₄) v d W forces between molecules (1)

easily broken (1) (or not much energy required to break bonds)

12

(b) Al good conductor (1)

delocalised electrons (1) (or 'sea of' or 'free' electrons)

Si, P₄ non-conductors (1) (i.e Si and or P; if one wrong loses mark)

Electrons localised (1) (or no free electrons or no free charged particles) (can score for Si or for P)

(c) Mg reacts with steam (1) (or water vapour)

 $\begin{array}{l} Mg + H_2O {\longrightarrow} MgO + H_2 \mbox{ (1)} \\ \mbox{ (can score this mark if water not steam given)} \end{array} \\$

white solid (1) (or Mg glows) (can only score if steam given)

Ca reacts with (cold) water faster than Mg (1)

 $Ca+2H_2O\rightarrow Ca(OH)_2+H_2$ (1)

gas bubbles (1) (or fizz) <u>NOT</u> hydrogen produced Product dissolves (or forms a (white or ppt or cloudy) solid) (1) (or Ca dissolves)

(d) *Q.L.*

Be(OH)₂ <u>amphoteric</u> (1) (must mention <u>beryllium hydroxide</u> not just Be) 1 dissolves in acid and alkali (base) (1) (or react with (or acts as) an acid & alkali) Be(OH)₂ + 2H⁺ \rightarrow Be²⁺+2H₂O (1) (or Be(OH)₂+2HCl \rightarrow BeCl₂+2H₂O etc) Be(OH)₂ + 2H⁺ \rightarrow Be(OH)₄²⁻ (1) (or Be(OH)₂ + 2NaOH \rightarrow 2N_a⁺ + Be(OH)₄²⁻ etc) magnesium hydroxide basic (1) (or GpII hydroxides basic) soluble in acid (1) (or reacts with acid) Mg(OH)₂+2H⁺ \rightarrow Mg²⁺+2H₂O (1) (or Mg(OH)₂+2HCl \rightarrow MgCl₂+2H₂O) insoluble in base (1) (or does not react with NaOH/base) max 6

[30]

7

48. (i) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$ (1)1(ii) valency / outer electrons or 2 4s electrons (1)
are delocalised / sea of electrons (1)
(within lattice) of positive ions (1)
(marks 2 and 3 could be in diagram)
attraction between the positive ions and delocalised electrons (1)
(give even if nuclei or +ve atoms)4